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Abstract  

In the business of fleet management, operators or owners are faced with the difficult task of 

chosen between a fixed-time based replacement policy and a breakdown replacement strategy, 

in which a vehicle is replaced only when the repairs become nearly impossible. The focus in 

the choice made is whether it will attract a long- run cost effectiveness, as a fixed time 

scheduled if not properly modeled could result to underutilization of a vehicles, leading to 

profit loss or unnecessarily incurred high maintenance cost due to out of useful life cycle usage. 

In this study, a logarithmic transformation of costs data sets of an economic life cycle model   

is carried out to introduce the needed linearity in a vehicle age maintenance and salvage cost 

distribution for the determination of the respective costs function parameters required for a 

more accurate optimal replacement time estimation. 

The cost comparison of the improved model due to its data transformation and that of the 

untransformed data is done alongside their optimal replacement time results, to ascertain the   

sensitivity of the costs function parameters to the optimal   replacement time. 

While the model based on transformed data reported a reasonable replacement time of 18 

months replacement period in ten years planning horizon, that of the untransformed that 

reported an   unrealistic optimal time that is intractable.  Estimated costs and actual costs for 

the transformed data-based model showed little variations of about 0-150% for the 

maintenance cost which suffered greater disparity in the sourced data distribution and 0-109% 

for the salvage cycle costs. The model based on untransformed data set recorded wide variation 

in terms of 1000% increment in the estimated value over the actual recorded costs. 

 

Key Words: Logarithmic:  Linearity:  Life – Cycle:  Optimal Time:  Salvage Costs: Operational 

Costs 

 

1. INTRODUCTION 

Optimal replacement time determination in fleet management is an imperative, required to 

ensure the minimization of ownership cost, through adequate balancing of maintenance and 

salvage costs.  

The decision of when to replace a commercial vehicle is a complex challenge faced by 

fleet operators, transportation companies, and logistics managers. Over time, commercial 

http://www.iiardjournals.org/
mailto:owufu@fuotuoke.edu.ng
mailto:Ralphedokpia@yahoo.com


World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910 

Vol 9. No. 4 2025 www.iiardjournals.org online version 

  

 

 IIARD – International Institute of Academic Research and Development 

 
Page 19 

vehicles experience wear and tear, leading to increased maintenance costs, fuel inefficiencies, 

and higher risks of unexpected breakdowns. If a vehicle is replaced too early, significant 

financial resources may be wasted due to under-utilization, while delaying replacement can 

result in excessive operational costs and service disruptions (Johnson & Walker, 2021). 

Striking a balance between cost efficiency and vehicle reliability is crucial, yet existing 

approaches to vehicle replacement lack a systematic and data-driven model that integrates 

financial, technical, and operational factors into decision-making. The absence of a 

comprehensive framework leaves fleet managers relying on heuristic methods, which often 

result in sub-optimal financial and operational outcomes. 

Most commercial vehicle replacement decisions are traditionally based on fixed 

schedules, where vehicles are replaced after a predetermined number of years or mileage 

thresholds (Brown et al., 2020). However, this approach does not account for real-time 

variations in vehicle performance, usage intensity, or maintenance costs. Additionally, reactive 

replacement strategies, in which vehicles are replaced only after experiencing major 

breakdowns, often lead to increased downtime, reduced productivity, and higher unexpected 

repair costs (Anderson & Clark, 2022). The lack of a predictive and cost-optimized replacement 

model means that many organizations struggle to determine the best time to retire and replace 

their vehicles, leading to financial inefficiencies and reduced service quality. 

Most fleet owners make the uninformed decision of continuously spending on maintenance 

costs beyond necessary even outside the useful life cycle of a vehicle with erroneous 

impression that, it is more economical than replacement, as long as the existing vehicle can 

offer gains on services. 

Existing replacement models, attempt to proffer solution to this misleading business position 

by either determining the optimal time or usage in which overall ownership costs is lowest. 

The objective is the Minimization of life cycle sum of maintenance and replacement costs with 

recourse to age, mileage, resale value and cost of new equipment and focusing on whether to 

retain or replace the existing vehicle, considering operation costs and current health status 

(operational condition), or the determination of the thresholds for which repair costs exceeds 

replacement costs, taking cognizance of reliability, safety and technological advancement 

factors, fan et al (2001). 

The traditional equipment optimal replacement models involving average life-cycle cost 

minimization under replacement, maintenance and salvage costs are very cumbersome to solve 

for the optimal timing, due to the resulting transcendental equation. The complexity arises from 

the included exponential terms and functions parameters in the resulting equation, hence 

requiring a graphical solution. The functions parameters are determined from initial values of 

the maintenance and salvage costs at time t=0, with subsequent equipment age salvage and 

maintenance costs being a percentage increment of the initial value for the maintenance cost 

and a proportional decrease in the initial value for the salvage cost, as though the increase or 

decrease is uniformly distributed within the ages to constitute a uniform proportionate costing 

trend. In practical condition, the maintenance and salvage cost may not increase or decrease 

with the same proportion across the service duration, owing to   factors such as, operators 

varying expertise for non-permanent operators, different service period environmental impact 

due to seasonality, changes in government economic policies as it relates to taxes and duties, 

exchange rate and inflation effects, and deplorable road condition for transport equipment. 

Perhaps these factors may favour high maintenance and replacement cost in some periods and 

vice versa.  For periods with high maintenance and replacement costs, prospective owners of 

vehicles may prefer already used cars allowing for high salvage value with insignificant 

depreciation rate due to regular maintenance. In other cycles where the aforementioned factors 

reflect low replacement and maintenance costs, even with appreciable salvage value due to 

affordable maintenance cost, replacement may be more preferred. Should there be the 
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occurrence of these two extremes of the operating environment within a planning horizon, 

incurred maintenance cost and selvage values recorded within the horizon will experience a 

non-uniform distribution. In this study, to accommodate this irregularity resulting in non-

uniformity in the variation of the costs data sets, a regression and logarithmic transformation 

analysis of the costs data set is done to see which is more potent and of better results for the 

economic life cycle optimal replacement time strategy, here referred to as the conventional 

approach. The solution of the conventional method through the determination of the 

maintenance and salvage cost’s function parameters with the untransformed data sets is also 

examined to underscore the sensitivity of errors in the function parameters to the determination 

of the optimal replacement time  

 

2.  MATERIAL AND METHODS 

The materials and methods required and deployed in this study are presented in the format 

below. 

 

2.1 MATERIALS   

The materials required in the study includes the following: 

1. Published materials on optimal equipment replacement strategies and regression 

analysis.  

2. Sourced secondary data on the operations of a commuter bus. 

 

2.2 METHODS  

A theoretical (mathematical modelling) and secondary data research method are adopted in this 

study to improve the existing economic life cycle cost model and relate its result’s differentials 

under varied data form. 

 

2.3 MODEL ANALYSIS.  

Consider a commuter bus with a constant replacement cost (M), such that at any instance, its 

maintenance cost rate at age n years is C (n), and the salvage value at age n is S(n). suppose at 

some times (t) within a planning horizon, these costs vary, then there exists an optimal time (t) 

to replace the bus for which the total cost per unit time G (t) will be minimal, where G (t) is the 

ownership or operating cost per unit time. This cost G (t), is the sum of the replacement and 

maintenance costs minus the salvage cos. The ownership cost per unit time is reported in 

Nahumas (2009) as follows; 

𝐺(𝑡)  =  𝑀 +  ∫ 𝐶
𝑡

0
(n)  𝑑𝑛 − S(t)  − − − − − − − − − − − (1) 

Note, here that the time (t) represent a replacement cycle, where a replacement cycle is defined 

as the time between successive replacements. Hence G(t) represents the total ownership or 

operating cost per replacement cycle. Subsequently,∫ 𝐶(𝑛) 𝑑𝑛
𝑡

0
,   represents the maintenance 

cost rate. 

The decision variable of equation (1) is the time between the introduction of the bus into 

operation up until it is replaced, hence the objective is to determine the optimal cycle time that 

minimizes the average cost per unit time, where the average cycle cost is given as; 

 

𝐺(𝑡)  =  𝑀/𝑡 + 
1

𝑡
 ∫ 𝐶(𝑛)

𝑡

0

𝑑𝑛 – 
𝑆(𝑛)

𝑡
 − − − − − − − − − − − − −  (2) 

Here, it is assumed that the replacement cycles are identical, and that in what follows, the 

equipment(bus)age maintenance and salvage costs are uniformly distributed to warrant for 

same proportionate representation.  
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Finding the optimal time 𝑡∗ for equation (2) requires that,  

𝐺(𝑡∗)  =  −
𝑀

𝑡2
 +  

B(t)

𝑡2
+  

C(t)

𝑡2
 +  

S(t)

𝑡2
−  

S(t)

𝑡2
=  0  

⇒  t(t)  +  S(t)  =  M +  B(t)  +  tS(t)  − − − − − − − − − − − − − − − − − − (3)  

where B(t)   =  ∫ C(n) dn
𝑡

0

 − − − − − − − − − − − − − − − − − − − − − − − −(4)  

 

As reported in several literature including Nahmias (2009), the exponential function best 

describes the increasing and decreasing maintenance and salvage cost respectively of an 

equipment in operation over time, hence we assume the following exponential cost functions;  

 

C(n)  = αeβn------------------------- (5) 

Where α , β > 0 

And 

S(n)  = γe−ϕn -------------------- (6) 

Where γ , ϕ >  0 

Hence equation (3) after substituting eqn. (5) and (6) can be rewritten as follows;  

t αeβt + γ e−ϕt = M + ∫ 𝛼 𝑒𝛽𝑛𝑡

0
 𝑑𝑛 + 

𝑡𝑑 (𝑦𝑒− ϕt)

𝑑𝑡
 -------------- (7) 

Using the rules of integration by parts, 

𝐵(𝑡) = ∫ 𝛼 𝑒𝛽𝑛𝑡

0
 dn = 

𝛼

𝛽
 (𝑒𝛽𝑡 − 1) --------------------------------- (8) 

Similarly, by simple differentiation, 
𝑑(𝛾𝑒−𝜙𝑡)

𝑑𝑡
 = γϕ𝑒−ϕt ------------------- (9) 

 

Hence, the optimal time solution equation is written as; 

α eβt (t-1/β) +  ye−ϕt(1+𝜙𝑡) + α/β = M -------------(10) 

Equation (10) is a transcendental equation as it contains both exponential and constants, hence 

solving for t is a complex issue, rather, according to the report of Nahmias (2009), it is more 

ideal to find the value of t that will make the left-hand terms as close enough to the replacement 

cost (M), which will define the optimal value of t. At this juncture, a graphical solution may be 

recommended where a constant value of M is drawn against varying values of the left-hand 

terms (L H S) of equation (10) for various values of t, until there is an intercept of the lines. 

The value of t at the point of intersection is the optimal time. 

 

2.4 AN OVERVIEW OF LINEAR REGRESSSION BASED MAINTENANCE AND 

SALVAGE COSTS FUCTIONS PARAMETERS DETERMINATION  

The assumption of linearity in costs data set is the bases for the determination of the costs 

functions parameters in the economic life cycle modelling of optimal replacement time 

estimate. In the study of Nahmias, (2009), the values of the parameters (γ and ϕ) in equation 

(10) were evaluated for the salvage cost function based on the assumption that the replacement 

cost which is the original equipment cost, depreciate with a constant value for every data point 

or specified duration, such that the value of the salvage cost at time (t=0) which was designated 

𝑆(𝑜) was equal to the original equipment price. 

Consecutive yearly salvage costs where then determined as    

S(1)= (1-�̇�/100) S(0), S(2) =(1-�̇�/100)2, ………, S(j)=(1-�̇�/100)𝑗  where j is the total number 

of data points in a planning horizon and �̇�%  is the percentage depreciation value. Here data 

points mean the time sub- division of the planning horizon. This assumption though allows for 
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the easy determination of the salvage cost rate functions parameters (α, β), but does not allow 

for the possibilities of appreciable variance in actual consecutive cycle cost due to randomness 

introduced by fluctuating cost occasion by the envisaged mid extreme-points scenario of 

possible high and low costs with no uniform distribution within the planning horizon. Similarly, 

the ratio of the previous cycle maintenance cost to that of the present was defined as constant 

value. This again eroded the possibilities of lesser expenditures on maintenance cost in some 

cycles due to chance quality vehicle parts usage, design to reduce frequent break down, 

operational proficiency, expertise and trust issues of current equipment operator, higher 

environmental impact due to seasonality and purpose driven friendlier government policies on 

one hand and higher maintenance cost in other cycles. In some other literature like, Hartman 

(2005) and ukwu et al. (2024), where the salvage and maintenance cost functions parameters 

were utilized recommended regression approach in the determination of the parameters 

although they also introduced the term S(0) into the regression equation as the salvage value 

of the equipment at time t=0 .  

The regression approach to cost parameter determination proceeds with conversion of the costs 

exponential function to linear form using a logarithmic transformation, but where negative 

parameters are determined, the regression approach is truncated, since the trend of decreasing 

salvage value and increasing maintenance costs is reversed by negative parameters, Nahumias, 

(2009). 

In this study, a logarithmic transformation of costs data set is done for linearity and thereafter, 

the conventional economic life cycle model is employed to determine the optimal replacement 

time. 

Consider eqn. (6) as an exponential function of the salvage cost rate,  

Recall eqn. (6)   

𝑆(𝑡) = γ𝑒−𝜙𝑡  

Fitting eqn. (6) for multiple data points, (where data points could be weekly, monthly yearly, 

or such time sub – division of the planning horizon) with regression method gives; 
 𝑙𝑛 𝑆(𝑡𝑖)   =  𝑙𝑛γ − 𝜙𝑡𝑖  − − − − − − −  (3) 
𝑙𝑒𝑡 𝑙𝑛𝑆(𝑡𝑖) = 𝛾𝑖   
𝑙𝑛γ =  𝑎 
𝑎𝑛𝑑  𝑡𝑖  =  xi =  𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 (𝑏𝑢𝑠), 𝑎𝑡 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑖 
𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, − − − − −, 𝑗 , 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡  
 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

 

Hence, equation (3) can be written as; 

Yi =  𝑎 –  𝜙𝑋𝑖 − − − − − − − − (12) 

Where a = the constant that is the estimate of the regression line intercept on the salvage cost 

axis 

𝜙 = the estimate of the slope of the regression line. 

𝑌 𝑖 = Represent the estimate of the average value of the salvage cost for a specified time. 

Similarly, the fit for equation (5) is given as; 

Recall equation (5)   

𝐶(𝑡𝑖)  =  𝛼𝑒𝛽𝑡 
𝑙𝑛𝐶(𝑡𝑖)  =  𝑙𝑛𝛼 +  𝛽𝑡𝑖  − − − − − −(13) 

𝑙𝑒𝑡 𝑙𝑛𝐶(𝑡𝑖)  =  𝜃𝑖 
𝑙𝑛𝛼 =  𝑏 

𝑎𝑛𝑑 𝑡𝑖 =  𝑇i 
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Hence, equation (13) can be rewritten as,  

𝜃𝑖 =  𝑏 +  𝛽𝑇𝑖  − − − − − − − − − (14) 

𝜃𝑖= the estimate of the average value of the maintenance cost for a specified cycle time. 

The normal equation for equation (12) are; 

   𝑎 =   
Ʃ𝑌𝑖 − 𝜙 Ʃ 𝑋𝑖  

𝑗
  − − − − − − − − − − −  (15) 

𝑎𝑛𝑑 𝜙Ʃ𝑋2i + 𝑎Ʃ 𝑋𝑖  = Ʃ 𝑋𝑖𝑌𝑖  − − − − − − − −16) 

The normal equation for equation (14) are;  

𝛽= 
𝐽Ʃ𝑇𝐢θ𝐢−(Ʃ𝑇𝐢 )(Ʃθ𝐢) 

𝑗(Ʃ𝑇𝟐𝐢) −( Ʃ𝑇𝐢 )𝟐
  − − − − − − (17) 

b= 
Ʃ𝜃𝐢

𝐽
 – 

𝛽(Ʃ𝑇𝐢)

𝐽
  = 𝜃�̅� −  𝛽 �̅� − − − − − − − − − −(18) 

Where θ ̅and �̅�𝑖 are mean values 

 

2.5 DETERMINATION OF THE COSTS FUNCTION PARAMETERS BASED ON 

THE PROPORTIONAL COSTS APPROACH WITH UNTRANSFORMED COSTS 

DATA  

In the proportional cost approach to the determination of the costs functions parameters, the 

salvage and maintenance cost in each consecutive cycles progresses with a constant proportion. 

Hence equation (6) at t=0 becomes; 

𝑆(0) = γ𝑒−𝜙0 − − − − − − (19) 

Where 𝑆(0) is the salvage value of the bus before the commencement of the replacement cycles 

at t=0 and it is equivalent to the bus original purchase price. 

Since 𝑆(0) = M at t = 0,  

Let the depreciation in the salvage value of the bus in percentage be �̇�%  of (M), such that the 

salvage value after one year (S(1)) will be given as ; 

𝑆(1) (1-�̇�/100) M = γ𝑒−𝜙(1) 

Since γ= M, we have 

𝑆(1) = (1-�̇�/100)M = M𝑒−𝜙 − − − − − −20) 

 

Hence, 

𝑒−𝜙 = ( 1 −
�̇�

100
) 

⇒  𝜙 =  −In ( 1 −
�̇�

100
) − − − − − − − −(21) 

Therefore 

𝑆(𝑡) = M𝑒−(−𝐼𝑛(1−
�̇�

1𝑜𝑜
)𝑡

 − − − − − − (22) 

Similarly, if the maintenance cost of the bus for the first year B(1) is given , and the incremental 

rate is also stated as it is with the conventional approach , let us assume B(1) = # L and the 

maintenance cost incremental rate per year is c% , then we have that,  
𝐶(t)

𝐶(t − 1)
= 1 +

𝑐

100
 − − − − − − − − (23) 

And 
𝛼

𝛽
(𝑒𝛽 − 1) = 𝐿 𝑓𝑜𝑟 𝑡 = 1 𝑦𝑒𝑎𝑟 − − − − − −(24) 

Where L is the maintenance cost for the first year. 

But, 
∝ 𝑒𝛽𝑡

𝛼 𝑒𝛽(𝑡−1)   =  𝑒𝛽 = (1 + 𝐶/100) − − − − − − (25) 

Hence, 𝛽 = 𝐼𝑛 (1 + 𝑐/100) − − − − − − − − − (26) 
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From equation (8) 

𝛼 =  
𝐵(1)×𝛽 

𝑒𝛽−1
 =  

𝐿 ×𝐼 n(1+ 𝑐/100)

𝑒𝐼𝑛(1+ 𝑐/100)−1
 − − − − − − (27) 

Hence, equation (5) can be rewritten as;  

𝐶(𝑡𝑖) =  
𝐿.𝐼n (1+𝑐/100)

𝑒𝐼n(1+𝑐/100)−1
   [𝑒𝐼n(1+𝑐/100)𝑡] − − − − − − (28) 

Let the salvage cost per 𝑖𝑡ℎ data point be Pi and that of the maintenance cost be Ki , the value 

of  and e can be determined from simple ratio and proportion according to Will, (2004) as 

follows; 

�̇� =  [1 −
Ʃ𝑖=0

𝑗
p(i+1)/pi

j−1
]100− − − − − − (29) 

Similarly, 

C = [1 −
Ʃ𝑖=1

𝑗
K(i+1)/Ki

j−1
]100− − − − − − (30) 

 

2.6 THE PROPOSED IMPROVEMENT TO THE PROPORTIONAL COSTS 

APPROACH WITH LOGARITHMIC TRANSFORMATION IN THE 

DETERMINATION OF THE MAINTENANCE AND SALVAGE COST FUNCTIONS 

PARAMETERS  

In the application of the proportional costs approach, the defined incremental and depreciation 

values of the maintenance and salvage cost of an equipment (bus) must reflect the variations in 

each cycle’s cost value. This is only achieved, if the variation is equal or with minimal 

deviations, such that, each consecutive maintenance and salvage cost bears a constant 

proportion to the previous. Otherwise, the computational error introduced by cost terms with 

large deviations from the proportional value will distort the functions parameters true values, 

thereby generating false replacement time. Supposing as envisaged there are closely and widely 

dispersed costs values within the maintenance and salvage cost distribution, then there is the 

need to introduce linearity to the costs distribution to reflect a near uniform cost distribution 

within the replacement cycles. 

The adjustment to the proportional cost approach of the conventional optimal equipment time 

determination, requires the non-linearity in the maintenance or salvage cost as the case may be, 

to be reduced as much as possible through a logarithmic transformation of the costs to their 

lowest form. This approach will help reduce disparity of large variance and provide the window 

to assess a dispersed data set. This one step data transformation procedure supposing a data set 

is represented by Pi is given as; 𝑃𝑖𝑇  

𝑃𝑖𝑇 =   𝐼n𝑃i − − − − − −(31) 

Where 𝑃𝑖𝑇  is the transformed data set. 

When the transformation is concluded, a depreciation value (�̇�) is determined for the salvage 

cost as; 

                        �̇� = (1 −
Ʃ𝑖=1

𝑗
 
𝑌(I +1)T

YiT

𝑗−1
) ------------ (32) 

I=0, 1, 2…... j 

The term   (1 −
Ʃ𝑖=1

𝑗
 
Y(I +1 )T

YiT

𝑗−1
) is the multiplier of each data points salvage cost to give the 

succeeding data point salvage cost. 

Here, unlike the proportional costs approach where the value of 𝑒 ̇ can be determined from the 

untransformed data set, 𝑒 ̇  is carefully selected to minimize its error effect on the optimal time 

estimation as it relates to the parameter ϕ.  

Similarly, the percentage increase in consecutive data points or service ages maintenance cost 

(c) is determined as;   
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C= [1 −
Ʃ𝑖=1

𝑗 θ(i+1)T

θiT

J−1
]100 ------------------ (33) 
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2.7 DETERMINATION OF COST FUNCTION PARAMETERS WITH THE PROPORTIONAL COST APPROACH WITH 

UNTRANSFORMED FIELD COSTS DATA SETS 

An inaccurate choice of maintenance and salvage costs functions parameters possibly influenced by the non - linearity of costs data set can lead to 

wrong replacement time optimization, thereby hindering profit maximization from an equipment utilization within its useful life cycle. Below is 

the actual field record of the maintenance and salvage costs for 10 years operation of a commuter bus in Free will line in Owan East, Edo State 

Nigeria for optimal replacement time analysis 

 

Table 2.1: Commuter bus operational activities for a period of 10 years of a Toyota HIACE, 2010 Model (Hummer) 15 Seaters.  

Original 

purchase price 

Years 

of operations 

Maintena

nce-nce 

Cost C(t) 

 # 

Salvage Cost 

S(t)  

# 

Maintenance 

Activities 

                        Remarks 

4,500,000 0 0 4,500,000 No Servicing Salvage value was based on 

potential buyers offer at no 

increase in replacement cost 

4,500,000 2013 105,000 4,000,000 General Servicing 

4,500,000S 2014 216,000 3,900,000 Servicing, brake pads 

and shock changes 

Same Reasons for Salvage Value, 

but gradual increment in tariffs 

4,700,000 2015 310,000 3,750,000 Servicing, tyres 

Replacement. 

Purchase of battery, 

exhaust and shock 

repairs 

Maintenance due to change of 

drivers, salvage cost due to rising 

inflation 

4,900,000 2014 360.000 3,400,000 Servicing, panel work, 

Radiator change, 

electrical work and 

uncaptured expenses 

Better operational factor from new 

driver causing marginal 

maintenance cost 

5,150,00 2017 402,000 2,950,00 Servicing, shock and 

brake pad changes 

rings and piston 

change replacement of 

water pump 

Weakened engine operation 

resulted in lower salvage value and 

less optimal performance 
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5,300,000 2018 710,000 2,900,000 Engine replacement, 

servicing, steering bus 

replacement 

Marginal salvage cost decreases 

due to engine replacement 

5,550,000 2019 715,000 2,870,00 Shock replacement 

servicing, starter and 

un-captured expenses. 

High parts cost due to COVID 

issues, also resulting in marginal 

salvage cost decrease because of 

high bus replacement cost  

5,650,000 2020 800,000 2,860,000 Servicing lyres hub 

and sundry parts 

replacement 

Higher bus replacement cost 

resulting in marginal decrease in 

salvage cost and steady rising 

maintenance cost 

5,920,000 2021 980,000 2,800,000 Servicing panel work 

including respraying 

and brake pads 

replacement 

High exchange rate and inflation 

causing marginal salvage value 

decrease and increase in 

maintenance cost 

http://www.iiardjournals.org/


World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910 

Vol 9. No. 4 2025 www.iiardjournals.org online version 

  

 

 IIARD – International Institute of Academic Research and Development 

 
Page 28 

6,000,000 2022 1,002,000 2,750,000 Servicing, shocks and 

brake pad 

replacement. 

replacement of top 

engine block and 

general maintenance 

Same reasons as before for 

marginal decrease in salvage value 

and maintenance cost, increasing 

replacement cost is due to, 

inflation higher exchange rate and 

high tariffs 
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Table 2.2: Transformed and Un-untransformed Data Set of Maintenance and Salvage Costs 

 

 

To determine the values of e and c, for the untransformed data set, recall equation (29) and (30)  

Recall equation (29); 

�̇� = 100 [1 −  
Ʃ𝑖=1

𝑗 𝑝(𝑖+1)

𝑝𝑖

𝑗 − 1
] 

For i = 0, 1, 2…j 

From the entries of 𝑝(𝑖+1) and 𝑝𝑖 in table 2.3, we have; 

�̇� = (1 −
9.54

10
) 100 = (0.056)100 = 5% 

 

 

Recall equation 21 

ϕ = −In ( 1 −
ė

100
 ) 

⇒ϕ = −In  0.95 = 0.0513 

Hence S(𝑡𝑖) from equation 22 becomes; 

S(𝑡𝑖) = 4,500,000 𝑒−0.0513𝑡𝑖 

Similarly, using equation (30)  

C= (1 −  
Ʃ𝑖=1

𝑗 𝐾(𝑖+𝟏)

𝑘𝑖

𝑗−1
) 100 

For 𝑖 = 1, 2, 3…j 

From the entries of 𝐾(𝑖+𝟏) and 𝑘𝑖 in table 4.3 we have that,  

DATA 

POINTS 

(𝒊) 

InC(𝑡𝑖) 

𝒀𝒊𝑻 

# 1,000,000 

In(𝑡𝑖) 

𝜽𝒊𝑻 

10,000 

𝒀(𝒊+𝟏)𝑻

𝒚𝒊𝑻
 

𝜽(𝒊+𝟏)𝑻

𝜽𝒊𝑻
 

𝑝(𝑖+1)

𝑝𝑖
 

𝑘(𝑖+1)

𝑘𝑖
 

0.  1.504    -     -    -     -    0 

1.  1.386 2.35  0.92 1.31 0.89 2.06 

2.  1.361 3.07 0.98 1.12 0.98 1.44 

3.  1.322 3.43 0.97 1.04 0.96 1.16 

4.  1.224 3.58 0.93 1.03 0.91 1.12 

5.  1.082 3.69 0.88 1.15 0.87 1.77 

6.  1.065 4.26 0.98 1.00 0.98 1.01 

7.  1.054 4.27 0.99 1.03 0.99 1.12 

8.  1.051 4.38 1.00 1.05 1.00 1.23 

9.  1.030 4.59 0.98 1.00 0.98 1.023 

10.  1.012 4.61 0.98 - 0.98  

        Ʃ 13.091 38.23 9.61 9.73 9.54 11.93 
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c = (1 −  
11.93

9
)  𝑋 100 = (. 33)100 

= 33% 

 

To determine the maintenance cost for this value of 𝑐, 

Recall equation (25) 

𝑒𝛽= (1 +  c/100)  =  ( 1+ 33/100) = 1.33 

 β =  In 1.33 = 0.285 

Given that L = # 105, 000 = B(1) 

From equation (27) 

∝ =  
𝐵(𝑖) β

eβ − 1
 =    

105 000 × 0.285

𝑒0.285 − 1
 =   

29,925

0.329762020
 

 ∝ =  90, 747.26 

Hence ∝/β = 3, 184, 114. 334 

⇒𝐵(𝑡𝑖) = 3, 184, 114. 334 (𝑒0.285𝑡𝑖 −  1) 

 

𝐵(𝑖) = # 1,050,000.001 as against # 105, 000 which is 10,000% increment 

For the salvage value estimation under this untransformed data approach,  

Recall eqn. (22)  

 

𝐵(𝑡𝑖) = M 𝑒−0.0513𝑡𝑖 

= 4,500,000 𝑒−0.0513𝑡𝑖 

For 𝑡𝑖 = 1yr 

𝑆(𝑡𝑖) = 4, 500, 000 𝑒−0.0513 

= # 4, 274, 971.33 as against # 4, 000, 000 in table 4.1 

Diff = #274,971.33 for the salvage cost 

The optimal time replacement equation for these new sets of parameters from equation (10) 

becomes; 

90,747.26𝑒𝟎.𝟐𝟖𝟓𝒕𝒊(𝑡𝑖 −
1

𝛽
) + 4,500,000𝑒−𝟎.𝟎𝟓𝟏𝟑𝒕𝒊(1 + 0.0513𝑡𝑖) + 3,141,114.334 = 𝑀 

 

2.8 DETERMINATION OF THE OPTIMAL REPLACEMENT TIME AND THE 

COSTS’ FUNCTION PARAMETERS FOR THE IMPROVED PROPORTIONAL 

COSTS APPROACH. 

The conventional method as it is referred to is in this study, allows the salvage cost at time 

(t=0) to be set equal to the original equipment (bus) purchase price. As earlier said, it sets a 

uniform variation for the equipment ages maintenance and salvage cost respectively, which 

presupposes uniform distribution of the respective data sets. 

The proportional increase in consecutive data point or ages maintenance costs (c) is not chosen 

arbitrarily, and to determine its value by the adjustment to the conventional method recall 

equation (32) 

𝑐 = (1 −  
Ʃ

𝜽(𝒊+𝟏)𝑻

𝜽𝒊𝑻

𝑗 − 1
) 100 

From the entries in Table 2.3, 
Ʃ𝑡=1

𝑗 𝜽(𝒊+𝟏)𝑻

𝜽𝒊𝑻

𝑗−1
=  

9.73

9
= 1.08 

⇒ c= (1 − 1.08  )100 = 8% 
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Similarly for the determination of the depreciation rate (�̇�), we proceed as follows; 

Recall equation (31), 

�̇�= [1 − (   
 

   

 Ʃ  
𝒀(𝒊+𝟏)𝑻

𝒀𝒊𝑻
 

𝐽−1
  )]1OO    

But  
 

   

 Ʃ  
𝒀(𝒊+𝟏)𝑻

𝒀𝒊𝑻
 

𝐽−1
=

9.61

10
 

�̇� = (   1 − 0.96  )100= (   0.04  )100 

�̇� = 4% 

The transformation of the maintenance costs has reduced the disparity to a mean value of 3.82 

and a mean deviation of 1.67 for the smallest term and 0.79 for the highest number. 

The proportional increase in consecutive ages cost is about 8% for the maintenance cost and 

4% depreciation value for the salvage cost analysis. From the above analysis of the value c = 

8 % and e = 4%, β and α can be determined as follows; 

For the determination of the maintenance cost function, recall equation (23), 

 
𝐶𝑡 

𝐶(𝑡𝑖−1)
 = 1 + c/100 = 1 + 

8

100
 = 1.08 

 

⚫ From equation (25), 

eβ = (1 +  c/100) (1 +  
8

100
 ) = 1.08 

⇒ β = In (1.08) = 0.0769 ≈  0.0769 

Given that L = # 105, 000 

• then from equation (27) we have,  

∝ =  
B(i). β

e0.077 −  1
 

 

∝ = 101, 009 

But ∝/𝛽 = 
101,009

0.077
 =1, 311, 810.05 

⇒ 𝐶(𝑡𝑖) = 101,009 𝑒0.7077𝑡𝑖 

And 𝐵(𝑡𝑖) = 1, 311, 810.
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TABLE 2.3 COSTS AND OPTIMAL REPLACEMENT TIME COMPARISON FOR THE TRANSFORMED AND UNTRANSFORMED 

DATA  

 

DATA 

POINTS 

ACTUAL 

YEARLY 

SALVAGE 

COST 

 

 

 

A 

 

 

 

 

( # ) 

ESTIMAT

ED  

YEARLY 

SALVAGE 

COST 

FOR 

TRANSFO

R-MED 

DATA 

B 

 

 

 

 

 

( # ) 

ESTIMATE

D YEARLY 

SALVAGE 

COST FOR 

UNTRANSF

O-RMED 

DATA 

C 

 

 

 

 

 

( # ) 

B – A 

 

 

 

 

 

 

 

 

 

 

 

( # ) 

C – A ACTUA

L 

YEARL

Y 

MAINT

ENANC

E COST 

 

( # ) 

ESTIM

ATED 

MAINT

E-

NANCE  

COST  

FOR 

TRANS

F-

ORME

D DATA 

 

E 

 

 

 

( # ) 

ESTIMAT

ED 

MAINTEN

A-NCE  

COST  

FOR 

TRANSFO

R-MED 

DATA 

 

F 

 

 

 

 

( # ) 

E-D 

 

 

 

 

 

 

 

 

 

 

 

( # ) 

F –D 

 

 

 

 

 

 

 

 

 

 

 

( # ) 

OPTI

-

MAL 

REP

L-

ACE

M-

ENT 

TIM

E  

FOR 

TRA

NSF

ORM

ED 

DAT

A 

 

 

(YEA

R) 

OPTI

-

MAL 

REP

L-

ACE

M-

ENT 

TIM

E  

FOR 

UNT

R-

ANSF

ORM

E-D 

DAT

A 

 

(YEA

R) 

2013 4, 000, 000 4,319,231.0

85 

4, 274, 

971.33 

319, 

231.09 

274,97

1.3 

105,000 105,000 1,050,000.0

01 

0 945,000 1-5 ∞ 

2014 3, 900, 000 4, 145, 723. 

81 

4, 061, 195. 5 245, 

723.81 

161,19

5.5 

216,000 218,404.

42 

2,446,250.1

3 

-2,404.42 2,230,250   

2015 3, 750, 000 3, 979, 186. 

48 

3, 858,109. 

90 

229,186.4

2 

108,1,0

9.9 

710,000 340,886 4,302,930.5

4 

60,354 3,992,930.5   

2016 3, 400, 000 3, 819, 339. 

10 

3, 665. 179. 8 419,339.1 265,17

9.8 

1,002,00

0 

473,171.

201 

6,771,873.6

4 

521,393.0

3 

6,411,873.6   
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2017 2, 950. 000 3, 665, 912. 

24 

3, 481, 897. 

50 

715,912.2

4 

531,89

7.5 

310.000 616,044.

87 

10,054,980.

42 

30,886 9,652.980.4   

2018 2, 900, 000 3, 518, 650 3, 307, 780. 

42 

618,650 407,78

0.42 

360,000 770,345.

30 

14,420,731.

16 

113,171 13,710,731.

2 

  

2019 2, 870, 000 3, 377, 302. 

80 

3, 142, 370. 

03 

507,302.8 272,37

0.03 

402,000 937,015.

05 

20,226,140.

71 

214,044.9 19,511,141   

2020 2, 860, 000 3, 241, 633. 

59 

2, 985, 231. 

80 

381,633.5

9 

125,23

1.8 

715,000 !,117,01

5.68 

27,945,954 222,015.0

5 

27,145,954   

2021 2, 800, 000 3, 111, 414. 

40 

2, 835, 951. 2 311,414.4 35,951.

2 

800,000 1,311,42

4 

38,211,468.

33 

317,015.7

0 

37,231,468.

3 

  

2022 2, 750, 000 2, 986, 426. 

13 

2, 694, 135. 

56 

236,426.1

3 

-

55,864.

4 

980,000 1521,393

.03 

51,862,160 331,424 50,860,160   
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3. RESULT AND DISCUSSION 

3.1 RESULT 

One of the conditions for the application of the regression (least squares) method to variable 

maintenance and salvage cost estimation is that, the functions parameters must be greater than 

zero i.e. β and ϕ > 0, Nahmias, (2009). This condition was not met in the application in this 

study, as the estimated regression line slope was negative i.e. ϕ = -0.0077. Hence, the regression 

method was not the best approach in the cost parameter determination. This would have 

resulted in rising salvage costs if the computation with a negative ϕ was done, negating the 

normal trend of depreciation in equipment (bus) value with age. Although, this negative value 

negates the normal salvage value trend, but reports a unique situation where, increase in 

replacement cost of an equipment (bus), discourages replacement to encourage maintenance, 

thereby resulting in either slow depreciation as reported in table 2.1 or a gradual increase in the 

operational equipment (bus) value due to high demand for fairly used equipment, which in 

some instance could lead to increase in salvage value of used equipment. 

The result of the logarithmic transformation reported in table 2.2 of the maintenance and 

salvage cost data sets reduced the disparity in their data point cost variation and allowed for a 

more representative choice of incremental rate and depreciation value for the maintenance and 

salvage cost respectively. Hence, in the application of the modified logarithmic based cost 

parameter determination for the conventional method, results in table 2.3 were more reflective 

of the entries in table 2.1 for the actual cost values. The disparity in the estimated cost values 

reported in table 2.3 for the maintenance cost was due to the wide variance in the actual 

consecutive data points values, which the transformation sought to reduce but obviously to an 

extent. This is supported by the unrealistic and irreconcilable differences between the estimated 

values of the untransformed data set in table 2.3 and the true value of table 2.1, which reported 

1000% increase in the first-year maintenance cost. For the salvage cost, the entries in table 2.1 

showed that the depreciation of the bus between time zero (t=0) to t=1 yr. was about 11% 

against 2% depreciation in other consecutive data points cost from t=1yr onward. This 

disproportionate depreciation was heightened in the estimated values in table 2.3, since the 

original purchase price is the bases of the salvage cost function. 

The optimal replacement time of 1.5yrs or 18months seems to be reasonable for a replacement 

cost of N4, 500,000 form table 2.1, since at the optimal time, the bus can still sell for N4, 

500,000 at an estimated operational cost of N429, 022.57. 

In the case of the untransformed costs formulated optimal replacement time procedure, the 

estimated optimal time is not achievable, since at 0 yr., the control value (LHS) is 7,323, 498.92   

which is about 1.6 of M, hence a range of optimal time does not exist for the untransformed 

data for t. 

The sensitivity test which involved comparing results of the transformed data sets to the 

untransformed sets showed that, widely dispersed data will result to a sub-optimal replacement 

time as the result of the untransformed data produced a replacement time that does not feasible. 

 

3.2 CONCLUSION 

The conclusion drawn at the end of this study is that, while utilizing the conventional economic 

life cycle salvage and maintenance costs analysis in the optimal equipment replacement time 

determination, the costs data set must be transformed to introduce linearity in the presence of 

obvious wide range disparity as it is with the maintenance cost. One of such normalization 

procedures is the logarithmic transformation as employed in the cause of this study. 
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